When it comes to analyzing survey data, you have to take into account the stochastic structure of the sample that was selected to obtain the data. Plots and graphics should not be an exception. The main aim of such studies is to try to infer about how the behavior of the outcomes of interest in … Sigue leyendo Scatter plots in survey sampling
Etiqueta: Sampling
dplyr and the design effect in survey samples
Blogdown entry here.For those guys like me who are not such R geeks, this trick could be of interest. The package dplyr can be very useful when it comes to data manipulation and you can extract valuable information from a data frame. For example, when using if you want to count how many humans have … Sigue leyendo dplyr and the design effect in survey samples
Small Area Estimation 101
Small area estimation (SAE) has become a widely used technique in official statistics since the last decade of past century. When the sample size is not enough to provide reliable estimates at a very particular level, the power of models and auxiliary information must be applied with no hesitation. In a nutshell, SAE tries to … Sigue leyendo Small Area Estimation 101
Voting intention and calibration estimators – My article in CJS
During the last few years, I've been very interested in electoral studies. If you have been a reader of this blog, maybe you could remind that I predicted, some years ago, that Santos was going to win the presidential elections in Colombia. From that very election (Zuluaga won in the first round, while Santos won … Sigue leyendo Voting intention and calibration estimators – My article in CJS
I don’t care about that lost unit
Just assume that you have planned a survey along with the necessary sample size to obtain representativity. Let’s suppose the sample size is 100. However, as nonresponse is always present, unfortunately your effective sample size is 99. Consider the following figure. It shows two scatterplots, the one on the right (expected) has one more point that … Sigue leyendo I don’t care about that lost unit
Estratificación implicita usando muestreo sistemático
Una de las razones por las cuales el muestreo sistemático es utilizado en las primeras etapas de un diseño muestral es por su facilidad de implementación. Además, si el marco de muestreo cuenta con información auxiliar categórica (o continua que pueda ser categorizada) es posible ordenar el marco de acuerdo a estas variables. Teniendo en … Sigue leyendo Estratificación implicita usando muestreo sistemático
Nunca utilice el estimador de Horvitz-Thompson
Si está realizando inferencia en dominios poblacionales y su muestra no contiene elementos en cada uno de los dominios, no utilice este estimador. Yo soy un tipo que en términos de estadística cree con firmeza en dos cosas: 1) la inferencia basada en la medida de probabilidad inducida por un diseño (muestral o experimental) y 2) … Sigue leyendo Nunca utilice el estimador de Horvitz-Thompson